
To: Professor Merz
From: Benjamin Nitkin
Subject: IGVC Progress Report
Date: October 23, 2013

This past week, the programming team has been working on integrating the cameras into 
ROS and RoboRealm. (RoboRealm's been troublesome, as the computer refuses to run two 
identical webcams at once.) This memo will lean heavily towards what we've learned about 
ROS. So far, we have the cameras communicating with the computer under ROS. Based on 
camera setup, adding additional nodes to ROS, such as sensors and serial communication, 
should be fairly simple. 

ROS is a framework of applications designed to interface a computer with assorted robotic 
hardware. It includes libraries for common tasks, such as positioning, divergence (depth) 
mapping, hardware drivers, and serial communication. ROS is built around a node / 
publisher / subscriber model. Every piece of ROS software, whether it's a camera driver, 
mapping service, or image viewer, is called a node. Nodes manipulate data by publishing or 
subscribing to topics. For instance, the camera driver we're using publishes images and 
camera calibration data to the /gscam/image_raw and /gscam/camera_info topics, 
respectively. Other nodes can subscribe to these topics; a viewing window for each camera 
subscribes to the /cameras/left/image_raw and /cameras/right/image_raw topics. (We 
remapped the default topic paths to more sensible ones; more on that later.) This publisher-
subscriber model simplifies data transport – new nodes can query the central ROS server 
(roscore) for the data they want. If a node starts before data it's subscribed to, it waits 
patiently for data, rather than crashing.

The simplest way to start a node is rosrun. The user simply specifies which node to start, 
any relevant options, and hits return. For instance, after initializing settings, rosrun gscam 
gscam starts a camera. rosrun becomes unwieldy for more complicated tasks. Starting a 
camera is simple enough, but starting two cameras, two viewing windows, stereo 
processing, and a viewing window for depth output is unwieldy. ROS provides a solution 
in .launch files. A launchfile is an XML file that specifies which nodes to start, what 
parameters to run them with, and where to place their topics in the hierarchy. A launchfile 
replaces dozens of shell commands with a single script, to be invoked by roslaunch.

Over the weekend, the cameras were set up on ROS. After some tinkering and learning on 
the fly, we devised a launchfile that started the cameras and stereo processing, with output 
windows to debug. Setting up one camera was easy, but whenever the second camera 
started, the first would exit (they were publishing to the same topic). ROS allows remapping
of topic names, which let us move each camera from /gscam/image_raw to a more 
descriptive path. With the name conflict solved, both cameras happily ran together.

As of Tuesday, the cameras were mounted in a crude stereo jig. Moving forward, a 
calibration pattern will be used to correct for camera distortion. Once the cameras are 
characterized, ROS should be able to generate a depthmap by comparing the left and right 
undistorted images. 

1



As an aside, I looked into giving the cameras unique names on disk. Linux handles 
everything as a file – when a camera's plugged in, it appears on the hard drive as 
/dev/video0 (a second camera is /dev/video1, and so on). These paths aren't unique to the 
camera, though. The software needs to know which camera is left and which is right, or all 
depths will be inverted. Unfortunately, the cameras are identical (they carry neither unique 
ID, nor serial, nor different version numbers). The only way to tell them apart is by the USB 
port they're plugged into. If the cameras had a unique ID, I could write some code to give 
each its own path (say, /dev/videoleft and /dev/videoright). I can't, so we'll have to make sure 
to keep the cameras in the same USB ports and identify them that way.

2


